Processing math: 100%
Subalgebra B12+A21E16
73 out of 119
Computations done by the calculator project.

Subalgebra type: B12+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from B12 .
Centralizer: T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: B12: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4, A21: (0, 0, 1, 2, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: g36, g19+g8, g4+g15
Positive simple generators: g36, g8+g19, g15g4
Cartan symmetric matrix: (210110001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (220240004)
Decomposition of ambient Lie algebra: Vω1+2ω33V2ω34Vω2+ω3V2ω22Vω12V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω2+ω3+2ψ1+2ψ2Vω2+ω32ψ1+4ψ2V2ω3+4ψ12ψ2Vω1+2ω3Vω1+4ψ12ψ2V2ω3V2ω2V2ω34ψ1+2ψ22V0Vω2+ω3+2ψ14ψ2Vω14ψ1+2ψ2Vω2+ω32ψ12ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra.h5+h3h6+h1g33g32g24g16g21g18g12g10g15+g4g9g35
weight00ω1ω12ω2ω2+ω3ω2+ω3ω2+ω3ω2+ω32ω32ω32ω3ω1+2ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 00ω14ψ1+2ψ2ω1+4ψ12ψ22ω2ω2+ω32ψ12ψ2ω2+ω3+2ψ14ψ2ω2+ω32ψ1+4ψ2ω2+ω3+2ψ1+2ψ22ω34ψ1+2ψ22ω32ω3+4ψ12ψ2ω1+2ω3
Isotypic module decomposition over primal subalgebra (total 12 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0, 0, 0)Vω14ψ1+2ψ2 → (1, 0, 0, -4, 2)Vω1+4ψ12ψ2 → (1, 0, 0, 4, -2)V2ω2 → (0, 2, 0, 0, 0)Vω2+ω32ψ12ψ2 → (0, 1, 1, -2, -2)Vω2+ω3+2ψ14ψ2 → (0, 1, 1, 2, -4)Vω2+ω32ψ1+4ψ2 → (0, 1, 1, -2, 4)Vω2+ω3+2ψ1+2ψ2 → (0, 1, 1, 2, 2)V2ω34ψ1+2ψ2 → (0, 0, 2, -4, 2)V2ω3 → (0, 0, 2, 0, 0)V2ω3+4ψ12ψ2 → (0, 0, 2, 4, -2)Vω1+2ω3 → (1, 0, 2, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h5+h3
h6+h1
g33
g13
g5+g3
2g14
2g32
g32
g14
g3+g5
2g13
2g33
Semisimple subalgebra component.
g24
g34+g30
g8+g19
2g36
h5+2h4+h3+2h2
2h6+4h5+6h4+4h3+4h2+2h1
2g36
2g192g8
2g302g34
4g24
g16
g31
g11
g17
g20
g7
g29
g12
g21
g28
g6
g22
g25
g1
g26
g18
g18
g26
g1
g25
g22
g6
g28
g21
g12
g29
g7
g20
g17
g11
g31
g16
g10
g5g3
2g9
Semisimple subalgebra component.
g15g4
h52h4h3
2g42g15
g9
g3+g5
2g10
g35
g2
g34g30
g15+g4
g8g19
2g27
2g23
h5h3
2g23
2g27
2g192g8
2g42g15
2g302g34
4g2
4g35
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω1
ω1+2ω2
0
ω12ω2
ω1
ω1
ω1+2ω2
0
ω12ω2
ω1
2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
ω1+2ω3
ω1+2ω2+2ω3
ω1
2ω3
ω1+2ω2
ω12ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
ω1+2ω3
ω12ω2
2ω3
ω1
ω12ω22ω3
ω12ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω14ψ1+2ψ2
ω1+2ω24ψ1+2ψ2
4ψ1+2ψ2
ω12ω24ψ1+2ψ2
ω14ψ1+2ψ2
ω1+4ψ12ψ2
ω1+2ω2+4ψ12ψ2
4ψ12ψ2
ω12ω2+4ψ12ψ2
ω1+4ψ12ψ2
2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
ω2+ω32ψ12ψ2
ω1ω2+ω32ψ12ψ2
ω2ω32ψ12ψ2
ω1+ω2+ω32ψ12ψ2
ω1ω2ω32ψ12ψ2
ω2+ω32ψ12ψ2
ω1+ω2ω32ψ12ψ2
ω2ω32ψ12ψ2
ω2+ω3+2ψ14ψ2
ω1ω2+ω3+2ψ14ψ2
ω2ω3+2ψ14ψ2
ω1+ω2+ω3+2ψ14ψ2
ω1ω2ω3+2ψ14ψ2
ω2+ω3+2ψ14ψ2
ω1+ω2ω3+2ψ14ψ2
ω2ω3+2ψ14ψ2
ω2+ω32ψ1+4ψ2
ω1ω2+ω32ψ1+4ψ2
ω2ω32ψ1+4ψ2
ω1+ω2+ω32ψ1+4ψ2
ω1ω2ω32ψ1+4ψ2
ω2+ω32ψ1+4ψ2
ω1+ω2ω32ψ1+4ψ2
ω2ω32ψ1+4ψ2
ω2+ω3+2ψ1+2ψ2
ω1ω2+ω3+2ψ1+2ψ2
ω2ω3+2ψ1+2ψ2
ω1+ω2+ω3+2ψ1+2ψ2
ω1ω2ω3+2ψ1+2ψ2
ω2+ω3+2ψ1+2ψ2
ω1+ω2ω3+2ψ1+2ψ2
ω2ω3+2ψ1+2ψ2
2ω34ψ1+2ψ2
4ψ1+2ψ2
2ω34ψ1+2ψ2
2ω3
0
2ω3
2ω3+4ψ12ψ2
4ψ12ψ2
2ω3+4ψ12ψ2
ω1+2ω3
ω1+2ω2+2ω3
ω1
2ω3
ω1+2ω2
ω12ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
ω1+2ω3
ω12ω2
2ω3
ω1
ω12ω22ω3
ω12ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω1+2ω24ψ1+2ψ2Mω14ψ1+2ψ2M4ψ1+2ψ2Mω14ψ1+2ψ2Mω12ω24ψ1+2ψ2Mω1+2ω2+4ψ12ψ2Mω1+4ψ12ψ2M4ψ12ψ2Mω1+4ψ12ψ2Mω12ω2+4ψ12ψ2M2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2Mω2+ω32ψ12ψ2Mω1+ω2+ω32ψ12ψ2Mω1ω2+ω32ψ12ψ2Mω2+ω32ψ12ψ2Mω2ω32ψ12ψ2Mω1+ω2ω32ψ12ψ2Mω1ω2ω32ψ12ψ2Mω2ω32ψ12ψ2Mω2+ω3+2ψ14ψ2Mω1+ω2+ω3+2ψ14ψ2Mω1ω2+ω3+2ψ14ψ2Mω2+ω3+2ψ14ψ2Mω2ω3+2ψ14ψ2Mω1+ω2ω3+2ψ14ψ2Mω1ω2ω3+2ψ14ψ2Mω2ω3+2ψ14ψ2Mω2+ω32ψ1+4ψ2Mω1+ω2+ω32ψ1+4ψ2Mω1ω2+ω32ψ1+4ψ2Mω2+ω32ψ1+4ψ2Mω2ω32ψ1+4ψ2Mω1+ω2ω32ψ1+4ψ2Mω1ω2ω32ψ1+4ψ2Mω2ω32ψ1+4ψ2Mω2+ω3+2ψ1+2ψ2Mω1+ω2+ω3+2ψ1+2ψ2Mω1ω2+ω3+2ψ1+2ψ2Mω2+ω3+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2Mω1+ω2ω3+2ψ1+2ψ2Mω1ω2ω3+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2M2ω34ψ1+2ψ2M4ψ1+2ψ2M2ω34ψ1+2ψ2M2ω3M0M2ω3M2ω3+4ψ12ψ2M4ψ12ψ2M2ω3+4ψ12ψ2Mω1+2ω2+2ω3Mω1+2ω3M2ω3Mω1+2ω3Mω12ω2+2ω3Mω1+2ω2Mω1M0Mω1Mω12ω2Mω1+2ω22ω3Mω12ω3M2ω3Mω12ω3Mω12ω22ω3
Isotypic character2M0Mω1+2ω24ψ1+2ψ2Mω14ψ1+2ψ2M4ψ1+2ψ2Mω14ψ1+2ψ2Mω12ω24ψ1+2ψ2Mω1+2ω2+4ψ12ψ2Mω1+4ψ12ψ2M4ψ12ψ2Mω1+4ψ12ψ2Mω12ω2+4ψ12ψ2M2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2Mω2+ω32ψ12ψ2Mω1+ω2+ω32ψ12ψ2Mω1ω2+ω32ψ12ψ2Mω2+ω32ψ12ψ2Mω2ω32ψ12ψ2Mω1+ω2ω32ψ12ψ2Mω1ω2ω32ψ12ψ2Mω2ω32ψ12ψ2Mω2+ω3+2ψ14ψ2Mω1+ω2+ω3+2ψ14ψ2Mω1ω2+ω3+2ψ14ψ2Mω2+ω3+2ψ14ψ2Mω2ω3+2ψ14ψ2Mω1+ω2ω3+2ψ14ψ2Mω1ω2ω3+2ψ14ψ2Mω2ω3+2ψ14ψ2Mω2+ω32ψ1+4ψ2Mω1+ω2+ω32ψ1+4ψ2Mω1ω2+ω32ψ1+4ψ2Mω2+ω32ψ1+4ψ2Mω2ω32ψ1+4ψ2Mω1+ω2ω32ψ1+4ψ2Mω1ω2ω32ψ1+4ψ2Mω2ω32ψ1+4ψ2Mω2+ω3+2ψ1+2ψ2Mω1+ω2+ω3+2ψ1+2ψ2Mω1ω2+ω3+2ψ1+2ψ2Mω2+ω3+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2Mω1+ω2ω3+2ψ1+2ψ2Mω1ω2ω3+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2M2ω34ψ1+2ψ2M4ψ1+2ψ2M2ω34ψ1+2ψ2M2ω3M0M2ω3M2ω3+4ψ12ψ2M4ψ12ψ2M2ω3+4ψ12ψ2Mω1+2ω2+2ω3Mω1+2ω3M2ω3Mω1+2ω3Mω12ω2+2ω3Mω1+2ω2Mω1M0Mω1Mω12ω2Mω1+2ω22ω3Mω12ω3M2ω3Mω12ω3Mω12ω22ω3

Semisimple subalgebra: W_{4}+W_{10}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (300.00, 350.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (250.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 262431 arithmetic operations while solving the Serre relations polynomial system.